
P3 - Einstein Vision
Mihir Deshmukh

Robotics Engineering
Worcester Polytechnic Institute
Email: mpdeshmukh@wpi.edu

Ashwin Disa
Robotics Engineering

Worcester Polytechnic Institute
Email: amdisa@wpi.edu

Using 1 LATE day

Abstract—In this project, we develop an intuitive, vision-based
dashboard aimed at augmenting human drivers’ experience on
the road. Inspired by Tesla’s dashboard, this work integrates
deep learning techniques to tackle the complexities inherent in
autonomous driving. Central to this project is the creation of a
3D representation of the surrounding environment through the
detection of vehicles, road signs, lane markings, pedestrians, and
other objects. By leveraging techniques such as Object Detection,
Depth Mapping, and Pose Estimation, a seamless fusion of data
and visualization is achieved.

I. PIPELINE OVERVIEW

We received undistorted videos for 13 different scenes and
4 angles collected from a Tesla Model S. We opted to utilize
the front camera view for object visualization. For processing,
we select one image frame every 10 frames, run inference
on it, and save the information such as type of object, its
position, rotation, etc. for each frame in a scene we store using
a particular JSON format to facilitate rendering of the detected
objects. The same JSON file is read in Blender using the
scripting box in Blender and based on the information in the
JSON we use the provided blender models as well as certain
custom ones for different objects such as vehicles, pedestrians,
traffic lights, speed limit signs, etc.

II. CHECKPOINT 1: BASIC FEATURES

In the first phase, we implement basic features that are
absolutely essential for a self-driving car. Includes the follow-
ing: different types of lanes, vehicles (without classification),
pedestrians (without pose), Traffic lights, and stop signs.

A. Lane detection

Lane detection holds significant importance for autonomous
vehicles, particularly for their navigation. Initially, we imple-
mented CLRerNet [1] but unfortunately, it was unable to detect
the type of the lane. We employed a mask RCNN model [2]
trained on a custom lane detection dataset to detect various
types of lanes such as solid, dotted, divider line, and double
line. Subsequently, we utilized this information to accurately
plot the lanes in Blender. We extract the points of interest from
the mask using the following algorithm:

• Take the binary mask output from the model.
• Extract nonzero coordinates (ys, xs) from a binary mask,

returning an empty array if no points are found.

• Generate a set of evenly spaced target y-values, y new,
between the minimum and maximum of ys.

• For each y in y new:
1) Find ys indices close to y; if none, interpolate x

from ys and xs.
2) If indices are found, compute the mean of corre-

sponding xs.
• Pair the computed or interpolated x values with y new

to form new points.
• Return these points as an integer array.

We sample six such evenly distributed points on the mask and
store them. To translate the predicted lanes i.e. these points into
the 3D metric space, we employed monocular depth estimation
on the same image to estimate the depth of each pixel within
the lane. The resultant output provided a list of 3D points in the
world space, with their height assumed to be at ground level
(Z=0). These points were then used to generate a bezier curve
which fit a smooth curve between those points and visualized
within Blender. Additionally, the lane type information was
utilized to color code each segment accordingly. The model
was also able to detect road signs i.e. the arrows on the ground
which we will talk about later.

The lane detection worked significantly better on highway
scenes than on city scenes where the lane markings were faded
and not marked properly.

Fig. 1. Lane detection.

B. Vehicle, pedestrian, stop sign detection
For the first phase, we are required to detect the cars and

not classify them. Initially, we used YOLOv9 [3] for all



detections. YOLOv9 is robust and easy to infer directly from
an image input. The output is the bounding box, mask, and the
confidence score of each detected object. The depth map of
the same image was found using ZoeDepth. Using the object’s
bounding box, we estimated the pixel coordinates and mapped
them to the depth image. ZoeDepth [4] was initially used to
estimate the metric depth. Using the camera intrinsics, pixel
values, and metric depth, we estimated the 3D point of the
object and visualized it in Blender. A rotation matrix was
employed to rotate the 3D points with respect to the camera
frame. The Z-axis (depth) is perpendicular to the image plane.
The equation for the pixel to the 3D point is given below.

x = (u− cx) ∗ z/fx
y = (v − cy) ∗ z/fy

where fx, fy are the focal lengths and equal to
1594.7, 1607.7 mm. The principal points cx, cy are
655.2961, 414.3627 pixels respectively. z is the depth
and u, v are the pixel points of the object in the image frame.
The output x, y are the points in the 3D world frame. We
later found a better and more recent depth map estimation
model, Marigold [5] which gives a more robust output with
accurate depth information compared to Zeodepth.

Fig. 2. Colored depth image using Marigold framework

C. Traffic light detection
YOLOv9 was able to detect the traffic signal but was not

able to identify its color. To do so, we found a model [6]

Fig. 3. YOLOv9 output with the car, stop sign, scene 5 intersection

which had pre-trained weights and built over the YOLOv3
framework. This model was able to classify the green light as
”go”, the red light as ”stop”, the yellow light as ”warning”,
the left arrow as ”goLeft” and so on. However, the detection
isn’t very robust as it seems to miss detections from far away.
We would need to train on a larger dataset for more robust
results.

Fig. 4. YOLOv3 traffic light detection

III. CHECKPOINT 2:ADVANCED FEATURES

In this phase, we built over the previous work by enhancing
and adding more features.

A. Vehicle classification

In this phase, we replaced the YOLOv9 object detection
framework with Facebook’s DETIC [7] to do instance seg-
mentation. DETIC gives the existing COCO dataset classes
additionally also having the lvis classes. It also works with a
custom dictionary which we use to identify the car sub-types
such as sedan, SUV, pickup truck, hatchback, and truck using
custom vocabulary. We do essentially a non-max suppression
to get rid of multiple masks on the vehicles. The other
classes were identified using the standard predictor including
motorcycles and bicycles. This would not be possible using the
previous framework as it was not trained using these labels as



well as doesn’t allow for a custom vocabulary. The car subtype
classifications can be seen in Fig. 5. As we are using a custom
vocabulary, the confidence of the predictions is on the lower
side as it uses CLIP embeddings as input. Hence we only opt
to identify car sub-types using the custom vocabulary while
the other objects like stop signs, cones, barrels, etc from the
standard predictor.

Fig. 5. Detic Car Sub type detection

B. Vehicle pose estimation

We also had to estimate the orientation of the vehicles
for this phase. We use the implementation of YOLO3D [8]
trained on the KITTI dataset. We pass the bounding boxes
from DETIC to the regressor which predicts the 3D bounding
box. We use the yaw from this to spawn the cars with
the corresponding orientations. The model used the image
corp from DETIC i.e. the 2D bounding box from DETIC
predictions, to estimate the 3D location and back project onto
the image. The results were pretty accurate for all vehicle
subtypes except the trucks in the scene which had an offset
in the orientation. The possible reason could be the smaller
number of truck images in the dataset compared to other
vehicles. However, it should be noted that the yaw from this
is not very accurate when the car is very close or is occluded.
A more advanced network might be utilized for better results.
Fig. 6 shows a typical result from YOLO3D where the Blue X
denoted the front of the car. Fig. 7 shows a failure case where
the yaw is not accurate when the cars are too close. This is
apparent in scenes with traffic and the yaw artifacts can be
seen in the rendered videos.

C. Road signs

Along with the stop sign we also had to detect road signs on
the ground such as arrows and speed limit signs along with the
numbers. We used the pre-trained YOLOv8 weights from the
GLARE dataset paper [9] for identifying various signs. The
speed limit detection was found to be inaccurate with multiple
failures in detecting the actual limit. The arrows on the ground
were detected by the same lane detection mechanism used for
detecting the lane and its types. The output is a list of points
of the contour boundary of the arrow and a bezier curve is fit
along it. The contour detection and its’ estimated depth are

Fig. 6. 3D Bounding box from YOLO 3D

Fig. 7. 3D Bounding box Failure cases from YOLO 3D

reliable which made the results robust. The model was also
able to detect the cycling lane markings on the ground in some
instances. Fig. 9 and 8 show detections of some common road
signs.

Fig. 8. Road signs detection using YoloV8 (Pretrained Glare Dataset)

D. Miscellaneous objects

Apart from the trivial objects, there are plenty of objects
such as dustbins, traffic cones, and cylinders present in the
surroundings which we aim to detect. DETIC was able to
handle the detection of these objects and was found to be
pretty robust. The blender models for all such objects were
already provided. Using the depth information, each object
was seamlessly spawned in the environment.



Fig. 9. Speed limit detection

Fig. 10. Cones

E. Pedestrian pose estimation

We explored two approaches to estimate human pose
from detected pedestrians. Initially, we aimed to leverage the
yolo nas pose [10] framework, which provides key point co-
ordinates representing different body parts. The intention was
to map these key points onto an armature within Blender to
animate a human mesh. However, grappling with the complex-
ities of determining interlink angles for the armature proved
challenging, prompting us to seek an alternative solution.

Subsequently, we turned to the OSX [11] framework, offer-
ing a different methodology. By inputting monocular images
of human figures, OSX generates 3D mesh representations
encapsulated in .obj files. This streamlined our workflow
by providing readily usable mesh data for integration into
Blender. To ensure precise positioning within our Blender en-
vironment, we integrated depth and pixel information from the
input images to estimate the 3D world coordinates of the mesh
vertices. This approach facilitated the seamless integration of
human poses into our Blender scenes, enhancing the overall
efficiency and effectiveness of our project workflow.

IV. CHECKPOINT 3: BELLS AND WHISTLES

A. Brake light and Indicators

The analysis of vehicle light status, specifically brake lights
and indicators, employs the YCbCr color space due to its effec-
tive separation of luminance from chrominance components.
This separation is advantageous for identifying specific color
features under various lighting conditions. The following steps
outline the methodology:

Fig. 11. Trashcan

Fig. 12. Human mesh using yolo nas pose.

1) Take the input as a cropped image from the DETIC
mask.

2) Initially, the image undergoes Gaussian Blur filtering to
reduce noise.

3) The image is converted to the YCbCr color space,
emphasizing the Cr channel to highlight red hues.

4) A dynamic thresholding technique is applied, leveraging
the mean and standard deviation of the Cr channel, to
isolate significant red areas. This threshold is adjusted
to optimize the differentiation of red areas from the
background.

5) The binary mask is analyzed to quantify red areas in
the left and right sections of the image. This quantifi-
cation aids in determining the light status based on the
distribution of red areas.

6) A decision margin, calculated as a percentage of the
total red areas, is introduced to differentiate between the
statuses of the left/right indicators and brake lights.

7) The analysis concludes with the identification of the
vehicle light status, offering determinations of whether
the left or right indicator is on, the brake light is on, or
the brake light is off.

Some drawbacks that we were able to see from the results
are during nighttime as all the lights are on, it sometimes
misses the left and right indicators as the brightness variance
is low in some cases. This can be made more robust if we use
the taillight masks instead of the whole car. Also to account
for left and right from the cars from opposite directions, we
can include the flow directions calculated in the next section.



Fig. 13. Human mesh using OSX.

Fig. 14. Brake lights detection using YCbCr thresholding

B. Parked and moving vehicles

To distinguish between parked and moving vehicles, we
utilized optical flow analysis with the RAFT algorithm [12],
which provides monocular optical flow images indicating
relative flow between pixels. Higher flow rates are represented
by intensified colors in the flow images. Initially, we attempted
to use the Sampson distance to mask moving vehicles based on
their higher flow rates. However, we encountered a challenge
where vehicles in front, moving relatively slower compared to
our car, were mistakenly categorized as parked due to their
low flow rates. To address this issue, we devised a multi-
step approach. Firstly, we evaluated the net flow within each
bounding box provided by DETIC and compared it with the
flow from neighboring regions. If the difference in flow was
relatively low, indicating minimal movement of the object
relative to the scene, and if the net flow of the mask itself
fell within a specified range (indicating that cars moving in
the same direction were below a minimum threshold), we
categorized the vehicle as parked. Additionally, to account for
our car’s motion, we employed flow subtraction based on a
Gaussian mask, with the variance of the mask proportional to
the variance of flow in the image. This approach allowed us to
better distinguish between parked and moving vehicles. The
method can be summarised as follows:

1) Apply spatial weighting to the optical flow field from
RAFT, focusing on vector proximity to the image center
and intensity.

2) Assess optical flow within bounding boxes of detected
vehicles, comparing it to adjacent flow.

3) Classify vehicles based on flow magnitude differences:

Fig. 15. Right indicator example.

• Vehicles with minimal relative movement compared
to surroundings are classified as parked.

• Vehicles with flow magnitude significantly higher
than the surroundings are classified as moving.

4) Enhancements can be done by incorporating absolute
movement data for a more stable basis in movement
analysis and reducing false positives.

The flow output of the network is relative, hence the
weighted flow negation based on the variance of the image
and flow improves the results but still it is not very robust. A
better flow negation method would include the odometry data
of the car i.e. the camera. This will result in a much more
robust output.

V. EXTRA CREDIT: SPEED BUMPS

For speed bump detection, we can see in the video se-
quences, there is a sign associated with it. We use the [13]
dataset from Roboflow to train a YOLOv8 model to detect
speed bump signs as seen in Fig.18. Here, we assume the speed
bump is just beside the sign, which is the case for scene 9 as
seen in FigṪhis works well for scene 9 but this approach fails
in scene 5 as the speed bump is ahead of the sign and we need
to identify the speed bump in another way to accommodate
these changes. We tried to look at the depth map to see if we
got variations on the road, but it wasn’t a viable approach as
the monocular depth map didn’t capture these small details.
We also thought about identifying the sign on the road i.e.



Fig. 16. Optical flow.

Fig. 17. Parked and moving vehicles detections from optical flow.

the triangle on the speed bump Fig.18 which might be used
for determining the speed bump, but it is also not consistent
across all streets. The output for the speed bump rendered in
the video can be seen in Fig.19.

The final rendered images can be seen in Fig.20 and Fig.26
The overall pipeline can be visualized as follows 27:

Fig. 18. Speed Bump sign identification: Scene 9

Fig. 19. Speed Bump spawned in Scene 5

REFERENCES

[1] https://github.com/hirotomusiker/clrernet.
[2] https://debuggercafe.com/lane-detection-using-mask-rcnn/.
[3] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9:

Learning what you want to learn using programmable gradient infor-
mation, 2024.

[4] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and
Matthias Müller. Zoedepth: Zero-shot transfer by combining relative
and metric depth, 2023.

[5] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Ro-
drigo Caye Daudt, and Konrad Schindler. Repurposing diffusion-based
image generators for monocular depth estimation, 2024.

[6] https://github.com/sovit-123/traffic-light-detection-using-
yolov3?tab=readme-ov-file.

[7] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and
Ishan Misra. Detecting twenty-thousand classes using image-level
supervision, 2022.

[8] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka.
3d bounding box estimation using deep learning and geometry, 2017.

[9] Nicholas Gray, Megan Moraes, Jiang Bian, Alex Wang, Allen Tian, Kurt
Wilson, Yan Huang, Haoyi Xiong, and Zhishan Guo. Glare: A dataset



Fig. 20. Final Rendered Image sample - 1

Fig. 21. Final Rendered Image sample - 2

for traffic sign detection in sun glare. IEEE Transactions on Intelligent
Transportation Systems, 24(11):12323–12330, 2023.

[10] https://github.com/deci-ai/super-gradients/blob/master/yolonas-pose.md.
[11] Jing Lin, Ailing Zeng, Haoqian Wang, Lei Zhang, and Yu Li. One-stage

3d whole-body mesh recovery with component aware transformer, 2023.
[12] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field transforms

for optical flow. CoRR, abs/2003.12039, 2020.
[13] https://universe.roboflow.com/dakota-smith/lisa-road-signs.



Fig. 22. Final Rendered Image sample - 3

Fig. 23. Final Rendered Image sample - 4



Fig. 24. Final Rendered Image sample - 5

Fig. 25. Final Rendered Image sample - 6



Fig. 26. Final Rendered Image sample - 7

Fig. 27. Overall system pipeline


