
Centralized Multi-Robot Planning using dRRT
Algorithm

Manoj Velmurugan
Robotics Engineering

Worcester Polytechnic Institute
v.manoj1996@gmail.com

Ashwin Disa
Robotics Engineering

Worcester Polytechnic Institute
ashwin.disa@gmail.com

Abstract—This project aims to plan a path for multiple robots
simultaneously by treating the robots as a single composite system
with many degrees of freedom, known as centralized multi-robot
planning. The plan is to utilize dRRT (discrete Rapidly Exploring
Random Tree) algorithm over preplanned single robot PRM
(Probabilistic Roadmap) graphs. Instead of doing a tree search
over the entire cartesian workspace and performing expensive
collision checks over and over again, we are planning over a
environment-collision free state subset obtained via the tensor
product of individual robot PRMs.

Index Terms—PRM, dRRT, multi-robot, centralized path-
planning

I. PROBLEM STATEMENT

Compute a plan for all robots simultaneously by treating
the robots as a single composite system with many degrees of
freedom, known as centralized multi-robot planning.

A naive approach to solving this problem constructs a PRM
for each robot individually, and then plans a path using a typ-
ical graph search in the composite PRM (the product of each
PRM). Unfortunately, composite PRM becomes prohibitively
expensive to store, let alone search. If there are k robots, each
with a PRM of n nodes, the composite PRM has nk vertices!

More specifically, the project must try to solve the planning
scenarios provided in Figure 1. In the first scenario, robot 1,
robot 2 and robot 3, robot4 should exchange positions. And in
the second scenario, each robot should reach the diametrically
opposite point on the circle without colliding into each other.

Fig. 1: Problem Statement scenarios

II. RELATED WORK

Searching the exponentially large composite roadmap for
a valid multi-robot path is a significant computational chal-
lenge. Recent work to solve this problem suggests implicitly

searching the composite roadmap using a discrete version of
the RRT algorithm (dRRT). At its core, dRRT grows a tree
over the (implicit) composite roadmap, rooted at the start state,
with the objective of connecting the start state to the goal state.
Our project is based on the work on Multi Robot Discrete RRT
(MRdRRT) in [1].

III. METHODOLOGY

Fig. 2: PRMs for required scenarios.

For n robots moving in 2D cartesian space, the state space
is 2*n dimensional. Searching for a collision free path is
computationally expensive and it is equivalent to looking for
a needle in haystack. One way to simplify the computation is
to first obtain the PRM graph for individual robots. This PRM
graph already contains collision free (against environment)
path for a single robot. The Cartesian product of the individual
PRMs would give a composite graph that contains the potential
collision free coordinates. Then, a graph search algorithm like



A* can be implemented to plan a path around. PRMs for the
given scenarios are shown in Figure 2.

But given that we have n robots, the memory cost for
storing such composite roadmap graph is extremely high.
One workaround is to not represent the composite graph
explicitly and use an algorithm to sample points from the
implicit composite roadmap graph. This is done using the
dRRT algorithm as follows.

• Sample a (composite) configuration qrand uniformly at
random.

• Find the state qnear in the dRRT nearest to the random
sample in the existing RRT graph.

• Using an expansionoracle, find the state qnew in the
composite roadmap that is connected to qnear in the clos-
est direction of qrand. This is done using the individual
PRM edges. Whichever edge is in the closest direction
of qrand is chosen for an individual robot.

• Perform a robot to robot collision check with the qnew
point. If there is no collision, add it to the tree.

• Repeat until the goal is successfully added to the tree.
This is shown in Figure 3.

Fig. 3: Expansion Oracle.

IV. DISCRETE RRT
Since the graph serves as an approximation of some relevant

portion of the Euclidean space, traversal of the graph can be
viewed as a process of exploring the subspace. The dRRT
algorithm rapidly explores the graph by biasing the search
towards vertices embedded in unexplored regions of the space.

Let G = (V,E) be a graph where every v ∈ V is embedded
in a point in Euclidean space and every edge (v, v′) ∈ E
is a line segment connecting the points. Given two vertices
s, t ∈ V , dRRT searches for a path in G from s to t. As G is
represented implicitly, the algorithm uses an oracle to retrieve
information regarding neighbors of visited vertices.

A. Expansion Oracle

In order to retrieve partial information regarding the neigh-
bors of visited vertices, dRRT consults an oracle described

below, Given two points (v, v′) ∈ [0, 1]d , denote by ρ(v, v′)
the ray that starts in v and goes through v′ . Given three points
v, v′, v′′ ∈ [0, 1]d , denote by ∠v(v

′, v′′) the (smaller) angle
between ρ(v, v′) and ρ(v, v′′). In other words, the direction
oracle returns the neighbor v′ of v such that the direction
from v to v′ is closest to the direction from v to u. This is
also shown in Figure. 3.

B. Description of dRRT

At a high level, dRRT proceeds similar to the RRT algo-
rithm, and we repeat it here for completeness. The dRRT
algorithm grows a trees which is a subgraph of G and is
rooted in s. The growth of the tree is achieved by an expansion
towards random samples. Additionally, an attempt to connect
Tree with t is made. The algorithm terminates when this
operation succeeds and a solution path is generated. Here G
is the roadmap, s and t are the start and goal configurations
respectively. Expansion of T is performed by the EXPAND
operation which performs N iterations that consist of the steps
given above.

Algorithm 1 dRRT Planner

Require: s, t
1: T.init(s)
2: while true do
3: EXPAND(T )
4: π ← CONNECT TO TARGET (T, t)
5: if not empty(π) then
6: return RETRIEV E PATH(T, π)
7: end if
8: end while

Algorithm 2 EXPAND

Require: T
1: for i = 1→ N do
2: qrand ← RANDOM SAMPLE()
3: qnear ← NEAREST NEIIGHBOR(T, qrand)
4: qnew ← ORACLE(qnear, qrand)
5: if qnew /∈ T then
6: T.add vertex(qnew)
7: T.add edge(qnear, qnew)
8: end if
9: end for

After the expansion, dRRT attempts to connect the tree T
with t using the CONNECT TO TARGET operation. For
every vertex q of T , with one of the K nearest neighbors
of t in T , an attempt is made to connect q to t using the
method LOCAL CONNECTOR which is a crucial part of
the dRRT algorithm. A local connector is a mechanism that
connects the paths generated by individual robots at a local
level. It addresses the coordination challenges between robots
by ensuring that the paths are compatible and collision-free
in the shared environment. Finally, given a path from some



node q of T to t the method RETRIEV E PATH returns
the concatenation of the path from s to q, with π.

Algorithm 3 CONNECT TO TARGET

Require: T, t
1: for q ∈ NEAREST NEIGHBOR(T, t,K) do
2: π ← LOCAL CONNECTOR(q, t)
3: if not empty(π) then
4: return π
5: end if
6: end for
7: return ϕ

C. Local Connector

In the general dRRT algorithm the local connector is used
for connecting two given vertices of a graph. Given two
vertices V = (v1, v2, .., vm), V ′ = (v′1, v

′
2, .., v

′
m) of G we

find for each robot i a path πi on Gi from vi to v′i. The
connector attempts to find an ordering of the robots such that
robot i does not leave its start position on πi until robots with
higher priority reached their target positions on their respective
path, and of course that it also avoids collisions. When these
robots reach their destination robot i moves along πi from
πi(0) to πi(1). During the movement of this robot the other
robots stay put.

V. RESULTS

(a) H scenario

(b) Circle scenario

Fig. 4: Path visualization

We implemented MRdRRT for the two case scenarios
shown above using the Matplotlib python library to visualize
the path given by the algorithm. The robots are denoted by a
unique color and their respective goal positions by a rectangle

of the same color. Black region are the obstacles and white is
the collision free region.

The algorithm returned a feasible path for the first scenario
at all times. The second scenario was tested with number of
robots starting with 2 and gradually increasing the number.
The algorithm returned successful paths for 5 robots at all
times. As the robots were increased more than 5, the algorithm
was not able to find a solution in finite time in most cases.
This issue could be solved by either of the following ways:
decreasing the size of the robot, increasing the number of
nodes in the PRM or increasing the wait time. The algorithm
ran for 5000 iterations but it took more than finite time to run
all iterations. The issue was solved by decreasing the size of
the robot.

A simulation in MuJoCo was built as a further step. The
visualization snapshot can be seen in Figure. 5. A state flow
chart was implemented in Simulink as shown in Figure 6. It
takes in the current position and heading, provides a linear
velocity and turn rate as output. A Proportional controller was
used for heading. If the robot gets too close to a waypoint, it
will switch over to the next waypoint, provided all the other
robots have reached their respective waypoints.

Fig. 5: MuJoCo Visualization

Fig. 6: State Flow in Simulink

REFERENCES

[1] Solovey, Kiril, Oren Salzman, and Dan Halperin. ”Finding a needle
in an exponential haystack: Discrete RRT for exploration of implicit
roadmaps in multi-robot motion planning.” In Algorithmic Foundations
of Robotics XI: Selected Contributions of the Eleventh International
Workshop on the Algorithmic Foundations of Robotics, pp. 591-607.
Springer International Publishing, 2015.

[2] Multi-Robot Discrete RRT planner.
https://github.com/mrsd16teamd/MRdRRT.


